Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Behav Brain Res ; 450: 114498, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37201892

RESUMO

The medial geniculate body (MGB) of the thalamus is an obligatory relay for auditory processing. A breakdown of adaptive filtering and sensory gating at this level may lead to multiple auditory dysfunctions, while high-frequency stimulation (HFS) of the MGB might mitigate aberrant sensory gating. To further investigate the sensory gating functions of the MGB, this study (i) recorded electrophysiological evoked potentials in response to continuous auditory stimulation, and (ii) assessed the effect of MGB HFS on these responses in noise-exposed and control animals. Pure-tone sequences were presented to assess differential sensory gating functions associated with stimulus pitch, grouping (pairing), and temporal regularity. Evoked potentials were recorded from the MGB and acquired before and after HFS (100 Hz). All animals (unexposed and noise-exposed, pre- and post-HFS) showed gating for pitch and grouping. Unexposed animals also showed gating for temporal regularity not found in noise-exposed animals. Moreover, only noise-exposed animals showed restoration comparable to the typical EP amplitude suppression following MGB HFS. The current findings confirm adaptive thalamic sensory gating based on different sound characteristics and provide evidence that temporal regularity affects MGB auditory signaling.


Assuntos
Córtex Auditivo , Tálamo , Ratos , Animais , Tálamo/fisiologia , Corpos Geniculados/fisiologia , Estimulação Acústica , Sensação , Filtro Sensorial , Córtex Auditivo/fisiologia
2.
Mol Neurobiol ; 56(2): 920-934, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29804231

RESUMO

The periaqueductal gray matter (PAG), as one of the mostly preserved evolutionary components of the brain, is an axial structure modulating various important functions of the organism, including autonomic, behavioral, pain, and micturition control. It has a critical role in urinary bladder physiology, with respect to storage and voiding of urine. The PAG has a columnar composition and has extensive connections with its cranially and caudally located components of the central nervous system (CNS). The PAG serves as the control tower of the detrusor and sphincter contractions. It serves as a bridge between the evolutionary higher decision-making brain centers and the lower centers responsible for reflexive micturition. Glutamatergic cells are the main operational neurons in the vlPAG, responsible for the reception and relay of the signals emerging from the bladder, to related brain centers. Functional imaging studies made it possible to clarify the activity of the PAG in voiding and filling phases of micturition, and its connections with various brain centers in living humans. The PAG may be affected in a wide spectrum of disorders, including multiple sclerosis (MS), migraine, stroke, Wernicke's encephalopathy, and idiopathic normal pressure hydrocephalus, all of which may have voiding dysfunction or incontinence, in certain stages of the disease. This emphasizes the importance of this structure for the basic understanding of voiding and storage disorders and makes it a potential candidate for diagnostic and therapeutic interventions.


Assuntos
Encéfalo/fisiologia , Substância Cinzenta Periaquedutal/fisiologia , Bexiga Urinária/fisiologia , Fenômenos Fisiológicos do Sistema Urinário , Humanos , Vias Neurais/fisiopatologia , Sistema Urinário/patologia
3.
Brain Res Bull ; 142: 116-121, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30016723

RESUMO

INTRODUCTION: Many of the currently available therapies for urinary incontinence target the peripheral autonomic system, despite many etiologies residing in the central nervous system. Following previous experiments that determined the ventrolateral column of the periaqueductal gray matter (vlPAG), to be the main afferent station of bladder sensory signals, we aimed for electrophysiological characterization of vlPAG neurons using single unit recording. METHODS: 15 rats were anesthetized and underwent implantation with electrodes at the dome and the neck of the bladder, to electrically stimulate the detrusor. After craniotomy, a glass micropipette was inserted in vlPAG to record neuronal action potentials. The detrusor was stimulated by a series of 20 Hz pulses, for a total duration of 50 s at an intensity of 2 mA, for each vlPAG neuron selected. Single unit recordings were performed on a total of 26 neurons. Confirmation of electrode position was made by iontophoretic ejection of Pontamine sky blue. RESULTS: The firing rate of vlPAG neurons decreased significantly during the stimulation period. Peristimulus time histogram (PSTH) analysis showed 24 out of 26 neurons to be unresponsive to stimulation. All recorded vlPAG neurons showed irregular firing patterns. CONCLUSIONS: The change in firing rate may point to an overall inhibitory influence of bladder stimulation on vlPAG neurons. These data suggest an inhibitory relay station at the vlPAG, before sensory bladder signals would affect pontine micturition center. The lack of the inhibitory effect on PSTH may be due to a longer interval between neuronal response and the stimulation.


Assuntos
Neurônios/fisiologia , Substância Cinzenta Periaquedutal/fisiologia , Bexiga Urinária/fisiologia , Potenciais de Ação , Animais , Estimulação Elétrica , Eletrodos Implantados , Masculino , Microeletrodos , Inibição Neural , Ratos Sprague-Dawley
4.
Front Cell Neurosci ; 12: 133, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29867366

RESUMO

Reflexes, that involve the spinobulbospinal pathway control both storage and voiding of urine. The periaqueductal gray matter (PAG), a pontine structure is part of the micturition pathway. Alteration in this pathway could lead to micturition disorders and urinary incontinence, such as the overactive bladder symptom complex (OABS). Although different therapeutic options exist for the management of OABS, these are either not effective in all patients. Part of the pathology of OABS is faulty sensory signaling about the filling status of the urinary bladder, which results in aberrant efferent signaling leading to overt detrusor contractions and the sensation of urgency and frequent voiding. In order to identify novel targets for therapy (i.e., structures in the central nervous system) and explore novel treatment modalities such as neuromodulation, we aimed at investigating which areas in the central nervous system are functionally activated upon sensory afferent stimulation of the bladder. Hence, we designed a robust protocol with multiple readout parameters including immunohistological and behavioral parameters during electrical stimulation of the rat urinary bladder. Bladder stimulation induced by electrical stimulation, below the voiding threshold, influences neural activity in: (1) the caudal ventrolateral PAG, close to the aqueduct; (2) the pontine micturition center and locus coeruleus; and (3) the superficial layers of the dorsal horn, sacral parasympathetic nucleus and central canal region of the spinal cord. In stimulated animals, a higher voiding frequency was observed but was not accompanied by increase in anxiety level and locomotor deficits. Taken together, this work establishes a critical role for the vlPAG in the processing of sensory information from the urinary bladder and urges future studies to investigate the potential of neuromodulatory approaches for urological diseases.

5.
Int J Urol ; 25(6): 621-626, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29577439

RESUMO

OBJECTIVES: To determine the phenotype of the ventrolateral part of the periaqueductal gray matter neurons after bladder stimulation. METHODS: In the experimental group, electrical stimulation of the bladder was carried out under freely moving condition by a bipolar stimulation electrode implanted in the bladder wall. Thereafter, the brain sections were processed for immunohistochemical analysis using antibodies against c-Fos (neuronal activation marker) together with one of the following: tyrosine hydroxylase (dopaminergic cell marker), vesicular glutamate transporter (glutamatergic cell marker), serotonin, glutamate decarboxylase (glutamate decarboxylase 67, gamma-aminobutyric acid cell marker) and neuronal nitric oxide synthase. We used design-based confocal stereological analysis to quantify the immunohistochemically stained sections. RESULTS: A significant increase in the number of c-Fos-positive cells in the ventrolateral part of the periaqueductal gray matter after stimulation was found. Furthermore, the ratio of c-Fos cells double labeled with vesicular glutamate transporter was significantly higher in the ventrolateral part of the periaqueductal gray matter region in the stimulated compared with the sham group. Quantitative analysis of the other four cell types did not show any significant difference. CONCLUSION: These findings suggest that glutamatergic neurotransmission in the ventrolateral part of the periaqueductal gray matter is seemingly the main pathway to be activated after receiving sensory signals from the bladder.


Assuntos
Neurônios Aferentes/fisiologia , Substância Cinzenta Periaquedutal/fisiologia , Bexiga Urinária/fisiologia , Micção/fisiologia , Animais , Estimulação Elétrica/instrumentação , Eletrodos Implantados , Ácido Glutâmico/metabolismo , Masculino , Modelos Animais , Substância Cinzenta Periaquedutal/citologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Sprague-Dawley , Bexiga Urinária/inervação
6.
J Toxicol ; 2012: 413279, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22888343

RESUMO

Considering the wide, positive reporting of the role of reactive oxygen species in ischemic brain injury, searching for antioxidant drugs within herbal remedies is logical. In this study, the protective effects of Scutellaria litwinowii Bornm. & Sint. on cell viability and reactive oxygen species production in cultured PC12 cells were investigated under serum/glucose-deprivation-induced cell death. After cells were seeded overnight, they were then deprived of serum/glucose for 24 h. Cells were treated with different concentrations of S. litwinowii extract (7.75-250 µg/mL). Cell viability was quantitated by MTT assay, and intracellular reactive oxygen species production was measured by flow cytometry. Serum/glucose-deprivation induced significant cell death after 24 h (P < 0.001). Treatment with S. litwinowii (7.75-250 µg/mL) reduced serum/glucose deprivation-induced cytotoxicity in PC12 cells after 24 h. A significant increase in intracellular reactive oxygen species production was seen following serum/glucose deprivation (P < 0.001). S. litwinowii (62 and 125 µg/mL, P < 0.01) treatment reversed the increased reactive oxygen species production following ischemic insult. This demonstrates that S. litwinowii extract protects PC12 cells against serum/glucose-deprivation-induced cell death by antioxidant mechanisms, which indicates the potential therapeutic application of S. litwinowii in managing cerebral ischemic and neurodegenerative disorders.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...